skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chang, Won"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Satellite images using multiple wavelength channels provide crucial measurements over large areas, aiding the understanding of pollution generation and transport. However, these images often contain missing data due to cloud cover and algorithm limitations. In this paper, we introduce a novel method for interpolating missing values in satellite images by incorporating pollution transport dynamics influenced by wind patterns. Our approach utilizes a fundamental physics equation to structure the covariance of missing data, improving accuracy by considering pollution transport dynamics. To address computational challenges associated with large datasets, we implement a gradient ascent algorithm. We demonstrate the effectiveness of our method through a case study, showcasing its potential for accurate interpolation in high-resolution, spatio-temporal air pollution datasets. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026
  2. Understanding the oscillating behaviors that govern organisms’ internal biological processes requires interdisciplinary efforts combining both biological and computer experiments, as the latter can complement the former by simulating perturbed conditions with higher resolution. Harmonizing the two types of experiment, however, poses significant statistical challenges due to identifiability issues, numerical instability, and ill behavior in high dimension. This article devises a new Bayesian calibration framework for oscillating biochemical models. The proposed Bayesian model is estimated relying on an advanced Markov chain Monte Carlo (MCMC) technique which can efficiently infer the parameter values that match the simulated and observed oscillatory processes. Also proposed is an approach to sensitivity analysis based on the intervention posterior. This approach measures the influence of individual parameters on the target process by using the obtained MCMC samples as a computational tool. The proposed framework is illustrated with circadian oscillations observed in a filamentous fungus, Neurospora crassa. 
    more » « less
    Free, publicly-accessible full text available April 3, 2026
  3. Abstract We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the Class 0 protostar IRAS 04166+2706, obtained as part of the ALMA Large Program Early Planet Formation in Embedded Disks. These observations were made in the 1.3 mm dust continuum and molecular lines at angular resolutions of 0 . 05 (∼8 au) and 0 . 16 (∼25 au), respectively. The continuum emission shows a disklike structure with a radius of ∼22 au. Kinematical analysis of13CO (2–1), C18O (2–1), H2CO (30,3–20,2), CH3OH (42–31) emission demonstrates that these molecular lines trace the infalling-rotating envelope and possibly a Keplerian disk, enabling us to estimate the protostar mass to be 0.15M < M < 0.39M. The dusty disk is found to exhibit a brightness asymmetry along its minor axis in the continuum emission, probably caused by a flared distribution of the dust and the high optical depth of the dust emission. In addition, the12CO (2–1) and SiO (5–4) emissions show knotty and wiggling motions in the jets. Our high-angular-resolution observations revealed the most recent mass ejection events, which have occurred within the last ∼25 yr. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026
  4. We present the results of the observations made within the ALMA Large Program called Early Planet Formation in Embedded disks of the Class 0 protostar GSS30 IRS3. Our observations included the 1.3 mm continuum with a resolution of 0″.05 (7.8 au) and several molecular species, including12CO,13CO, C18O, H2CO, and c-C3H2. The dust continuum analysis unveiled a disk-shaped structure with a major axis of ~200 au. We observed an asymmetry in the minor axis of the continuum emission suggesting that the emission is optically thick and the disk is flared. On the other hand, we identified two prominent bumps along the major axis located at distances of 26 and 50 au from the central protostar. The origin of the bumps remains uncertain and might be an embedded substructure within the disk or the temperature distribution and not the surface density because the continuum emission is optically thick. The12CO emission reveals a molecular outflow consisting of three distinct components: a collimated component, an intermediate-velocity component exhibiting an hourglass shape, and a wider angle low-velocity component. We associate these components with the coexistence of a jet and a disk wind. The C18O emission traces both a circumstellar disk in Keplerian rotation and the infall of the rotating envelope. We measured a stellar dynamical mass of 0.35 ±0.09 M
    more » « less
  5. Abstract The magnetic field of a molecular cloud core may play a role in the formation of circumstellar disks in the core. We present magnetic field morphologies in protostellar cores of 16 targets in the Atacama Large Millimeter/submillimeter Array large program “Early Planet Formation in Embedded Disks (eDisk),” which resolved their disks with 7 au resolutions. The 0.1 pc scale magnetic field morphologies were inferred from the James Clerk Maxwell Telescope POL-2 observations. The mean orientations and angular dispersions of the magnetic fields in the dense cores are measured and compared with the radii of the 1.3 mm continuum disks and the dynamically determined protostellar masses from the eDisk program. We observe a significant correlation between the disk radii and the stellar masses. We do not find any statistically significant dependence of the disk radii on the projected misalignment angles between the rotational axes of the disks and the magnetic fields in the dense cores, nor on the angular dispersions of the magnetic fields within these cores. However, when considering the projection effect, we cannot rule out a positive correlation between disk radii and misalignment angles in three-dimensional space. Our results suggest that the morphologies of magnetic fields in dense cores do not play a dominant role in the disk formation process. Instead, the sizes of protostellar disks may be more strongly affected by the amount of mass that has been accreted onto star+disk systems, and possibly other parameters, for example, magnetic field strength, core rotation, and magnetic diffusivity. 
    more » « less
  6. Abstract We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the binary Class 0 protostellar system BHR 71 IRS1 and IRS2 as part of the Early Planet Formation in Embedded Disks (eDisk) ALMA Large Program. We describe the12CO (J= 2–1),13CO (J= 2–1), C18O (J= 2–1), H2CO (J= 32,1–22,0), and SiO (J= 5–4) molecular lines along with the 1.3 mm continuum at high spatial resolution (∼0.″08 or ∼5 au). Dust continuum emission is detected toward BHR 71 IRS1 and IRS2, with a central compact component and extended continuum emission. The compact components are smooth and show no sign of substructures such as spirals, rings, or gaps. However, there is a brightness asymmetry along the minor axis of the presumed disk in IRS1, possibly indicative of an inclined geometrically and optically thick disk-like component. Using a position–velocity diagram analysis of the C18O line, clear Keplerian motions were not detected toward either source. If Keplerian rotationally supported disks are present, they are likely deeply embedded in their envelope. However, we can set upper limits of the central protostellar mass of 0.46Mand 0.26Mfor BHR 71 IRS1 and BHR 71 IRS2, respectively. Outflows traced by12CO and SiO are detected in both sources. The outflows can be divided into two components, a wide-angle outflow and a jet. In IRS1, the jet exhibits a double helical structure, reflecting the removal of angular momentum from the system. In IRS2, the jet is very collimated and shows a chain of knots, suggesting episodic accretion events. 
    more » « less
  7. Abstract Young protostellar binary systems, with expected ages less than ∼105yr, are little modified since birth, providing key clues to binary formation and evolution. We present a first look at the young, Class 0 binary protostellar system R CrA IRAS 32 from the Early Planet Formation in Embedded Disks ALMA large program, which observed the system in the 1.3 mm continuum emission,12CO (2−1),13CO (2−1), C18O (2−1), SO (65−54), and nine other molecular lines that trace disks, envelopes, shocks, and outflows. With a continuum resolution of ∼0.″03 (∼5 au, at a distance of 150 pc), we characterize the newly discovered binary system with a separation of 207 au, their circumstellar disks, and a circumbinary disklike structure. The circumstellar disk radii are 26.9 ± 0.3 and 22.8 ± 0.3 au for sources A and B, respectively, and their circumstellar disk dust masses are estimated as 22.5 ± 1.1Mand 12.4 ± 0.6M, respectively. The circumstellar disks and the circumbinary structure have well-aligned position angles and inclinations, indicating formation in a smooth, ordered process such as disk fragmentation. In addition, the circumstellar disks have a near/far-side asymmetry in the continuum emission, suggesting that the dust has yet to settle into a thin layer near the midplane. Spectral analysis of CO isotopologues reveals outflows that originate from both of the sources and possibly from the circumbinary disklike structure. Furthermore, we detect Keplerian rotation in the13CO isotopologues toward both circumstellar disks and likely Keplerian rotation in the circumbinary structure; the latter suggests that it is probably a circumbinary disk. 
    more » « less
  8. Abstract We performed radiative transfer calculations and observing simulations to reproduce the 1.3 mm dust-continuum and C18O (2–1) images in the Class I protostar R CrA IRS7B-a, observed with the ALMA Large Program “Early Planet Formation in Embedded Disks (eDisk).” We found that a dust disk model passively heated by the central protostar cannot reproduce the observed peak brightness temperature of the 1.3 mm continuum emission (∼195 K), regardless of the assumptions about the dust opacity. Our calculation suggests that viscous accretion heating in the disk is required to reproduce the observed high brightness temperature. The observed intensity profile of the 1.3 mm dust-continuum emission along the disk minor axis is skewed toward the far side of the disk. Our modeling reveals that this asymmetric intensity distribution requires flaring of the dust along the disk vertical direction with the scale height followingh/r∼r0.3as a function of radius. These results are in sharp contrast to those of Class II disks, which show geometrically flat dust distributions and lower dust temperatures. From our modeling of the C18O (2–1) emission, the outermost radius of the gas disk is estimated to be ∼80 au, which is larger than that of the dust disk (∼62 au), to reproduce the observed distribution of the C18O (2–1) emission in IRS 7B-a. Our modeling unveils a hot and thick dust disk plus a larger gas disk around one of the eDisk targets, which could be applicable to other protostellar sources in contrast to more evolved sources. 
    more » « less